L2-gain optimization for robust bipedal walking on unknown terrain
نویسندگان
چکیده
In this paper we seek to quantify and explicitly optimize the robustness of a control system for a robot walking on terrain with uncertain geometry. Geometric perturbations to the terrain enter the equations of motion through a relocation of the hybrid event “guards” which trigger an impact event; these perturbations can have a large effect on the stability of the robot and do not fit into the traditional robust control analysis and design methodologies without additional machinery. We attempt to provide that machinery here. In particular, we quantify the robustness of the system to terrain perturbations by defining an L2 gain from terrain perturbations to deviations from the nominal limit cycle. We show that the solution to a periodic dissipation inequality provides a sufficient upper bound on this gain for a linear approximation of the dynamics around the limit cycle, and we formulate a semidefinite programming problem to compute the L2 gain for the system with a fixed linear controller. We then use either binary search or an iterative optimization method to construct a linear robust controller and to minimize the L2 gain. The simulation results on canonical robots suggest that the L2 gain is closely correlated to the actual number of steps traversed on the rough terrain, and our controller can improve the robot’s robustness to terrain disturbances.
منابع مشابه
Robust Bipedal Locomotion on Unknown Terrain
A wide variety of bipedal robots have been constructed with the goal of achieving natural and efficient walking in outdoor environments. Unfortunately, there is still a lack of general schemes enabling the robots to reject terrain disturbances. In this thesis, two approaches are presented to enhance the performance of bipedal robots walking on modest terrain. The first approach searches for a w...
متن کاملNonholonomic virtual constraints and gait optimization for robust walking control
A key challenge in robotic bipedal locomotion is the design of feedback controllers that function well in the presence of uncertainty, in both the robot and its environment. This paper addresses the design of feedback controllers and periodic gaits that function well in the presence of modest terrain variation, without over reliance on perception and a priori knowledge of the environment. Model...
متن کاملBlind Walking of a Planar Bipedal Robot on Sloped Terrain
Simple intuitive control strategies can be used to compel bipedal robots to walk over sloped terrain. We describe an algorithm for walking dynamically and steadily over sloped terrain with unknown slope gradients and transition locations. The algorithm is developed based on geometric considerations. The overall algorithm is very simple and does not require the biped to have an extensive sensory...
متن کاملLinear reactive control for efficient 2D and 3D bipedal walking over rough terrain
The kinematics of human walking are largely driven by passive dynamics, but adaptation to varying terrain conditions and responses to perturbations require some form of active control. The basis for this control is often thought to take the form of entrainment between a neural oscillator (i.e., a central pattern generator and/or distributed counterparts) and the mechanical system. Here we use t...
متن کاملDynamic Walking on Randomly-Varying Discrete Terrain with One-step Preview
An inspiration for developing a bipedal walking system is the ability to navigate rough terrain with discrete footholds like stepping stones. In this paper, we present a novel methodology to overcome the problem of dynamic walking over stepping stones with significant random changes to step length and step height at each step. Using a 2-step gait optimization, we not only consider the desired l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013